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The function of the lateral parietal cortex
(LPC) has a long history of interest
in neuropsychology and is gaining
increasingly rapid investigation with
advances in neuroimaging techniques.

The angular gyrus (AG) region of LPC
in particular has been implicated in
a myriad of cognitive domains, yet an
accepted cross-domain synthesis has
proven elusive.
The angular gyrus (AG) region of lateral parietal cortex has been implicated in a
wide variety of tasks and functions, generating numerous influential theories.
However, these theories largely fail to explain why so many apparently distinct
cognitive activities implicate common parietal structures. We propose a unifying
model, based on a set of central principles, to account for coalescences of cog-
nitive task activations across AG. To illustrate the proposed framework, we show
how these principles account for findings from studies of episodic and semantic
memory that have independently implicated the same AG regions but thus far
been considered from largely domain-specific perspectives. We conclude that
AG computations, as part of a wider lateral parietal system, enable the online
dynamic buffering of multisensory spatiotemporally extended representations.
Here, we propose a unifying account of
AG function that can explain the findings
from two highly related, yet indepen-
dently researched cognitive domains:
episodicmemory and semanticmemory.

We conclude that the AG enables
the online dynamic buffering of multi-
sensory spatiotemporally extended
representations.
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The Multitask-Multibrain-Region Challenge
One of the principal aims of cognitive neuroscience is to explain how underlying neural processes
give rise to cognitive functions and dysfunctions. Cognitive neuropsychology, neuroimaging, and
other neuroscience approaches typically explore one domain (e.g., memory or language) and
seek to determine which brain regions are important and how their function changes with respect
to core task-related factors. When considering this commonly-used approach, a rapidly evolving
challenge emerges: if we look beyond the literature relating to each behavioural domain, it be-
comes apparent that many brain regions are common to multiple behavioural domains, implying
that there is no simple one-to-one mapping between each domain and any single underlying
brain region. In contrast, each cognitive behaviour maps onto a network of brain regions and,
in reverse, each brain area plays a role in a variety of different cognitive domains. Broadly speaking,
there are two contrastive approaches to this complex task-brain mapping conundrum. The first,
which might be termed ‘neuromarquetry’ [1], assumes that functions/tasks are supported by a
series of discrete, neighbouring subregions. Under this hypothesis, behaviour-brain mappings
look complex because of the tight packing of functions into a brain region, yet are more one-to-
one when considered at a finer spatial resolution. An alternative, the ‘primary systems hypothesis’
[2–7], observes that cognitive tasks and activities are likely to be supported by variable combina-
tions of more generalised neurocognitive computations and that these ‘primary systems’ will be
called upon bymultiple tasks. Under this view, the coalescence of task-related brain activity or dys-
functions in neuropsychological patients with respect to the same brain region, may reflect the
shared neurocomputation that the tasks call upon.

This multitask-multibrain-region challenge repeats across many brain regions and for a myriad of
tasks, a complete description of which is beyond the scope of this brief review. Instead, we have
selected a pertinent and prominent worked example: the lateral parietal cortex (LPC). Within the
LPC, we focus primarily on the angular gyrus (AG) and its purported contributions to episodic and
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semantic memory. Like other tertiary association regions, the LPC has been implicated in a wide
variety of tasks and functions [1,8,9]. We focus here upon AG contributions to episodic and
semantic memory because: (i) there are considerable bodies of functional neuroimaging and
neuropsychology literature on both topics, (ii) there are matured domain-specific theories and
proposals about the AG in each domain, yet (iii) these literatures have tended to remain isolated
from each other, despite being centred on two forms of long-term declarative memory and impli-
cating the same LPC regions (although see recent reviews [10,11]). Accordingly, these theories
(and those for other cognitive domains) largely fail to unify the myriad of cognitive activities that
implicate certain common LPC structures.

In this review, we examine potential roles of AG in episodic and semantic memory, considering
each body of literature in turn and pointing out some pitfalls that must be circumvented to
more readily understand implications of the data. We propose a unifying model, based on a set
of central principles, to account for the variety of cognitive tasks that activate the parietal cortex.
We illustrate how these central principles might account for the findings from cognitive neuro-
science studies of episodic and semantic memory. For clarity, we will define our anatomical
labelling here. The LPC is a heterogeneous region with multiple graded subregions (Box 1).
Whereas some of the observations and proposals we identify maywell applymore broadly across
these LPC regions, in this review we focus principally upon the episodic and semantic memory
data implicating AG and differentiate between its dorsal subregion (PGa), that borders with the
intraparietal sulcus (IPS), and the more ventral AG (PGp). According to our proposed model,
AG, as part of a wider LPC system, operates as an online, dynamic, multisensory buffer that,
Box 1. Functional Heterogeneity of Lateral Parietal Cortex

The wider LPC (as depicted in Figures 1 and 2) is a structurally and functionally heterogeneous region, with multiple
cytoarchitectonic subdivisions [92]. There appear to be two primary axes of variation; a dorsal versus ventral distinction,
and an anterior versus posterior distinction. The dorsal inferior parietal lobe (dIPL) forms part of a frontoparietal system,
whereas the ventral inferior parietal lobe (vIPL) connects with a distributed set of regions associated with the default mode
network or saliency network [68,93–99]. In terms of function, dIPL forms part of a domain-general frontoparietal multiple
demand network engaged by tasks that require a relatively high degree of executive control, including working memory,
numerical calculation, and top-down attention [100]. By contrast, within vIPL, supramarginal gyrus is mostly associated
with tasks involving phonological processes, theory of mind, and bottom-up attention [1]. There is disagreement in the lit-
erature as to whether functional boundaries within these brain structures are graded or sharply fractionated in nature, with
some functional connectivity evidence supporting a ‘fractionated’ account [101], whereas other studies observe graded
functional changes and shifts in cytoarchitecture [92,102,103].

It is possible that a wide variety of cognitive activities can draw from shared underlying machinery, with distinctions in emergent
functions arising from graded variation in connectivity. Even if the local buffering computation is the same throughout the LPC,
the types and forms of information being buffered will reflect the inputs and outputs to each subregion [28–30]. Applying this
generalised hypothesis to LPC provides a potential explanation for the contrastive (and sometimes anticorrelated) expressed
characteristics of various subregions. Specifically, dIPL is structurally connected to frontal executive processing areas
[93,104]. Most notions of executive control and attention require the action of selection/manipulation processes on internally
buffered information (akin to a working memory system), which might be reflected in prefrontal regions sending top-down
signals to dIPL, as demonstrated in primate electrophysiological studies [105]. In contrast, without the direct influence of pre-
frontal goal-directed cognition, the vIPL will act more like a ‘slave’ buffer, whereby information is accumulated and maintained
throughout a sequential activity. In addition to the emergent dorsal–ventral connectivity/functional differences, there are known
anterior–posterior variationswithin the vIPL and it is possible that these subdivisions also emerge from differential connectivity to
separate networks for language, memory, visuospatial processing, etc. [93,102,104]. A dorsal–ventral subdivision can be
observed within AG itself. Specifically, dorsal AG (PGa)/lateral bank of intraparietal sulcus (IPS) serves a distinctive function to
the ventral AG (central PGp), which is commonly associated with the default mode network. Indeed, dorsal and ventral AG
show opposing effect of task difficulty in semantic and visuospatial tasks; dorsal areas show a greater response when difficulty
is increased, whereas ventral AG shows the inverse pattern, stronger deactivation for harder tasks [7], as discussed in themain
text. Dorsal and ventral AG also play distinct roles in episodic memory tasks: dorsal AG/IPS acts as a ‘mnemonic accumulator’
that guides episodic decisions, or as a ‘familiarity signal’ [106], whereas ventral AG is (positively) engaged by episodic
recollection [107,108].
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through experience, becomes sensitive to the sequential spatiotemporal structure of an event or
behaviour that unfolds over time.

Identifying Principles of LPC Function
We focus here on three central principles. These notions link to a somewhat broader framework (the
parietal unified connectivity-biased computation model [1,7,12]) and previous seminal proposals
[8,13], which have taken a cross-domain perspective upon the AG (and wider LPC) and attempted
to distil what generalised neurocomputations might be supported by this region and its long-range
connectivity [9]. The first principle is that there are two orthogonal types of representations or
statistical structures that can be extracted from our time-extended, multimodal experiences and
behaviours [1,2,14,15]. If we integrate multimodal information over time, situations, and events,
then we can extract stable representations for experienced verbal and nonverbal items that
generalise across exemplars, irrespective of the situation or moment. This is one definition of
‘coherent’ semantic concepts and has been associated with the anterior temporal lobe (ATL)
and the end of the ventral pathwayswithin the temporal lobe [16–18]. In a complementary, orthogonal
manner, we can also integrate multimodal experiences over items, resulting in generalisable repre-
sentations about order, space, number, etc. Such spatiotemporal structures are typically invariant
to the elements that go into them, examples being location or number that are invariant to the items
being located or counted. These types of representation have classically been associated with
parietal and frontal regions along the ‘dorsal’ pathways. Note that the input to both pathways
is the same, time-extended, multimodal information, but the outcomes are mathematically
orthogonal to each other (this is analogous to single value decomposition, which generates two
orthogonal similarity matrices; when applied to language texts, for example, as they are in latent
semantic analysis, then the output includes an item/word similarity matrix and a paragraph/
time-chunk similarity matrix [19,20]).

The second linked principle is that the local neurocomputation in this region provides the basis for
online, dynamic, multisensory buffering that, through experience, becomes sensitive to the
sequential spatiotemporal structure of an event or behaviour that unfolds over time (i.e., as a
by-product of buffering, it can extract the item-invariant representations of order, location,
number, etc. noted earlier). The local computation is domain-general, acting on any modality
(as well as multimodal combinations) of spatiotemporal input. This kind of domain-general com-
putation is important because time-extended verbal (e.g., speech) and nonverbal behaviours
(e.g., sequential object use) necessitate precise synchronisation of planned actions with data
about the current state of the internal and external worlds [21,22]. This information, however, arrives
through different internal and external input channels and is ephemeral, necessitating a multimodal
convergent buffer or hub [23,24]. A number of prominent parallel distributed processing (PDP) com-
putational models have shown that the addition of recurrent feedback loops allows a model to
‘buffer’ verbal or nonverbal spatiotemporal input (Elman nets: [25]) in support of time-extended
verbal and nonverbal behaviours [2,21,26]. Furthermore, in these types of model, repeated buffering
can lead to long-term statistical learning and thus, by buffering time-, context-, and space-varying
inputs, it is possible for systems to become sensitive to content-invariant structures/schemata
(indeed, the extraction of information by PDPmodels can be formally related to single value decom-
position [27]).

The third principle is that the ‘expressed’ task contribution of AG, and wider LPC areas, will be
influenced by their long-range connections. Thus, even on an assumption that the local buffering
computation might be the same throughout the LPC, the types and forms of information being
buffered will reflect the inputs and outputs to each subregion (Box 1). This tenet is observed in
various implemented computational models, which have shown that the involvement of a
454 Trends in Neurosciences, June 2021, Vol. 44, No. 6
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processing unit to each cognitive activity is moulded both by its local computation and its connec-
tivity to different input/output information sources (cf. ‘connectivity-constrained cognition: C3’
[28–30]). Thus, even in a situation where the local unit computation is exactly the same, the con-
tribution to different cognitive tasks can vary in a graded way across a layer of such units (taken to
be analogous to a cortical region); units with equivalent connection to multiple inputs/outputs
have a domain-general character, whereas units with stronger connection to a subset of inputs/
outputs will become more domain-specific in nature [i.e., becoming tuned towards the
domain(s) for which those particular input/outputs are critical].

Episodic Memory
Compared with the storied history of research examining the role of the parietal cortex in domains
such as visuospatial attention and visuomotor abilities [31,32], investigation of a putative role
in episodic memory is a relatively recent development. Damage to medial parietal regions
has been known for some time to result in amnesia [33,34], but virtually no studies of episodic
memory following LPC lesions were published in the 20th century. Patients with such lesions
typically did not forget appointments with their neurologist, tended to be oriented in time and
place, and could usually remember the names of objects shown to them a few minutes before.
As such, they did not appear to be amnesic and neurologists understandably focused on the
patients’ more debilitating cognitive deficits. However, advances in functional neuroimaging
have led to a growing realisation that the AG makes an important contribution to episodic
memory, resulting in an explosion of research over the last decade or so that has sought to
understand what role the region might play (Figure 1).

Research in this area was stimulated by a review of functional neuroimaging studies [35], which
highlighted how left LPC responses, in particular centred on AG (mainly the PGp subregion),
are closely linked with processes contributing to successful retrieval [36]. A further common
finding was greater activation in AG when memory tasks involve retrieval of the context in
which stimuli were previously encountered, suggesting a particular importance for conscious
recollection [37]. AG appears not to contribute to successful encoding, often exhibiting deactiva-
tion [38,39], but a number of meta-analyses have confirmed the prevalence of parietal activity in the
episodic retrieval fMRI literature, identifying that AG regions may be more consistently activated
during recollection than regions traditionally considered critical for episodic memory, such as the
medial temporal lobes [40,41].

On the basis of such findings, a number of suggestions have been made as to the functional
contribution that AG might make to episodic memory. One influential review considered
three possible hypotheses [35]: that AG may be involved in the allocation of attention towards
aspects of mnemonic representations (a view subsequently expanded on by others [42];
Box 2), that activity in AG regions may reflect a memory strength signal that can be used to
guide behavioural responses [43], or that AG acts as a temporary storage buffer in which infor-
mation retrieved from long-term memory can be maintained online [44,45]. It was noted that
the data available at the time appeared to be partly, but not completely, explained by each of
these hypotheses [35]. Subsequent findings from neuroimaging research, and from studies
involving neuropsychological and neurostimulation-induced brain lesions, have led to the
development of further theories, all of which account for some aspects of the data but fall
short of accommodating the full range of findings from episodic memory research, or indeed
from the numerous other cognitive domains to which AG appears to contribute. These theories
do, however, converge on a number of common fundamental principles, namely that the com-
putations undertaken by AG result in dynamic, multimodal, consciously accessible representa-
tions that integrate features of events that unfold over time.
Trends in Neurosciences, June 2021, Vol. 44, No. 6 455
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Figure 1. Role of Angular Gyrus (AG) in Episodic Memory May Be to Enable the Subjective Experience of
Remembering. The results in (A) highlight consistent lateral parietal cortex (LPC) activity in neuroimaging studies of
episodic retrieval, particularly around inferior parietal lobe (IPL) regions such as the AG (from [35]). (B) Results from a study
testing autobiographical memory in patients with bilateral IPL lesions (from [46]). The patients were impaired when freely
recalling events from their lifetimes but their memory was unimpaired when answering specific questions about the events.
Several studies have identified that AG is sensitive to retrieval of multimodal episodic memories. The results shown in
(C) are one example, finding that AG exhibits greater activity during retrieval of integrated audio-visual compared with
unimodal information (from [54]). Another feature of IPL function may be in integrating retrieved episodic features within an
egocentric perspective. Data shown in (D) illustrate how disrupting AG with brain stimulation results in fewer
autobiographical memories being reported as experienced from a first-person perspective (from [47]). Together these
results converge on the notion that AG computations drive the online, dynamic buffering of multisensory spatiotemporally
extended representations that can enable the subjective experience of remembering past events. The asterisk in (B) and
(C) denotes significant differences. Abbreviation: IPS, intraparietal sulcus.

Trends in Neurosciences
Although LPC lesions do not result in amnesia, memory is not entirely unaffected. Two patients
with bilateral parietal damage were reported to be impaired at freely recalling autobiographical
memories, although their memories for the events tested appeared to be preserved when their
recall was cued by specific questions [46]. This deficit in the free, but not cued, recall of auto-
biographical memories has been replicated by subsequent brain stimulation studies that have
disrupted LPC function [47,48] and found to be specific to free recall of autobiographical memo-
ries, with free recall of previously studied word-pairs, or word-definition pairs, unaffected
[47,49,50]. The retrieval of autobiographical and word-pair memories differs, in that the former
often involves the subjective experience of remembering multifaceted events that take place over
a sequence of phases, combining features that may be of several modalities and recalled from a
first-person point-of-view [51–53]. Accordingly, AG has been found to be differentially sensitive
to the retrieval of multimodal spatiotemporal memories compared with those involving only a single
sensory modality [54–57] and to integrate these features within an egocentric perspective [47,58],
in a way that is characteristic of true episodic memory [59].
456 Trends in Neurosciences, June 2021, Vol. 44, No. 6
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Box 2. Attention Models

Dorsal versus Ventral Parietal Cortex

The current review focuses on the contribution of LPC to episodic and semantic memory, but a discussion of parietal
function cannot be complete without a mention of the attention literature. One seminal attention model [13] proposed that
LPC is divided into dorsal and ventral areas, which participate in top-down versus bottom-up/stimulus-driven attention,
respectively. According to this model, the stimulus-driven network acts as an alerting system, or ‘circuit breaker’, for
top-down processing. Some kind of dorsal–ventral LPC distinction is broadly recognised across investigations and
theories of many different cognitive domains. For instance, dIPL/IPS forms a key region of the executive processing
network responding more strongly to difficult decisions or task demands across diverse domains and task types
[6,7,100]. The ventral LPC is involved in bottom-up/stimulus-driven and automatic task components [1,8]. Greater AG
activation is associated with faster reaction times [109] and is more sensitive to automated than executively demanding
tasks (e.g., numerical fact retrieval versus numerical calculation, or making semantic decisions on concrete versus abstract
words) [1]. Indeed, there is also a dorsal–ventral distinction within the episodic memory literature, whereby ‘recollection’ is
associated with AG responses and ‘familiarity’ with the IPS [35].

Attention in the Ventral Parietal Cortex

In some of the first attempts to unify explanations of LPC function across cognitive domains, it was proposed that the
bottom-up attention system is not only automatically captured by salient external stimuli (e.g., a loud noise) but also
salient internal information, such as when an episodic memory is triggered and readily ‘pops’ into awareness [42].
Much evidence supports the view that ventral LPC plays an attentional role in episodic memory [8], although other
findings question predictions of this model. For example, neuropsychology and neurostimulation studies targeting
ventral LPC report no disproportionate impairments in episodic memory tasks that involve attentional manipulations
[47,50,61,110]). Although attention and memory can both be associated with bilateral LPC activity, episodic retrieval
effects are typically observed in the left AG, whereas attentional reorientation is generally associated with the more
anterior temporoparietal junction area in the right hemisphere [1,111,112]. This implies that there may be a separation
of cognitive functions both within and across the left and right ventral LPC.

Trends in Neurosciences
One question is what the adaptive value might be of the kind of dynamic, consciously accessible
mnemonic representation that AG appears to be involved in constructing. One possibility is that
subjective experience (also called ‘autonoetic awareness’ [59]) allows individuals to reflect on the
content of their memories, to integrate those memories with prior semantic knowledge, and to
make judgments about the things they remember. Consistent with this view, although patients
with parietal lesions perform well on many tests of episodic memory, their accurate recollections
are associated with reduced confidence [60,61] and fewer ‘remember’ responses on remember/
know tasks [49,62]. Functional imaging experiments have found AG activity to be sensitive to
qualitative characteristics of retrieved memories, such as their rated vividness, confidence, and
precision [55,63,64]. Thus, it may be that this region contributes to episodic memory by enabling
the online, dynamic buffering of multisensory spatiotemporally extended representations that are
accessible to conscious assessment and evaluation by other, primarily prefrontally mediated, brain
networks responsible for monitoring and decisionmaking [65–67]. The flexible coordination of such
whole-brain networks that involve prefrontal, medial temporal, and parietal cortices, appears to be
important for promoting successful recollection and the adaptive benefits that can be gained by
reflecting on our memories and using them to guide subsequent behaviour [68–70].

Semantic Memory
The association of the lateral parietal area with semantic processing has a long history. Henry
Head [71] was one of the first to document that temporoparietal damage leads to a form of
semantic impairment known as semantic aphasia. Intriguingly for our consideration of the contri-
bution of LPC to episodic and semantic memory, Head also noted that these same patients had
difficulty in relating their personal autobiographical history (perhaps prefiguring the findings of
others [46], see earlier). Later, it was proposed that the AG is a ‘semantic hub’ that stores multi-
modal semantic information based on neuropsychological evidence of semantic impairment
without other aphasic symptoms after AG damage [72,73]. Several large-scale, functional neuro-
imaging meta-analyses have shown that the ventral AG (in the PGp subregion) reliably exhibits
Trends in Neurosciences, June 2021, Vol. 44, No. 6 457
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differential activation levels with respect to semantic contrasts, such as words versus non-words,
or concrete versus abstract words [74,75]. It is also possible that the AG semantic hub theory
could be extended to explain AG engagement in the construction and expression of auto-
biographical and episodic memories in that many of the constituents are semantic in nature
[76]. Similar recent proposals include that common AG activation for semantic and episodic
tasks reflect the ‘reinstatement’ of conceptual processing necessary during episodic retrieval
[11], or the convergence of multimodal representations [10].

Despite the long-standing prominence of the semantic hub hypothesis and the robustness of one
line of neuroimaging data, there are several important caveats and apparent contradictions. First,
in terms of the neuropsychological evidence, patients with semantic aphasia do not appear to
have lost semantic representations but rather have dysfunction in the flexible use and manipula-
tion of semantic information [77]. Second, in revisiting a seminal case study [73] from a contem-
porary viewpoint, it is striking that the patient’s anoxia-induced damage was not isolated to the
AG but encompassed multiple areas, including prefrontal cortex, and was particularly severe in
the lateral and ventral ATL, bilaterally, all areas known to be crucial for representing and manipu-
lating conceptual knowledge [16].

There are also important caveats to the neuroimaging evidence, which varies dramatically depending
on the imaging contrast used. Specifically, the vast majority of tasks based on word/non-word or
concrete/abstract comparisons tend to involve a contrast of an easier versus more difficult task.
When studies use different contrasts then ventral AG activation is often missing. For instance, no
ventral AG activation was found in a meta-analysis of semantic versus non-semantic tasks [78] or
in a study specifically directed to examine semantic involvement in AG processing, which instead
found stronger activation for tongue movements than meaningful speech [79]. It is, in fact, possible
that the reliable differences found for concrete/abstract or word/non-word contrasts represent
difficulty-related deactivations in the ventral AG [1,7]. For example, a recent investigation that directly
manipulated task difficulty for both a semantic and a non-semantic visuospatial task found a main
effect of task difficulty (easy versus hard) in the ventral AG but no semantic versus non-semantic
difference [7]. Finally, and compellingly, the classic pattern of differential activation associated
with the contrast of words versus non-words or concrete versus abstract processing, can be
flipped by reversing the difficulty of the task or the stimuli [80,81].

A second important issue when considering the neuroimaging literature on the AG is that it is
important to take into account the polarity of activation relative to a resting baseline [1,12]. It is,
of course, always difficult to interpret ‘rest’, which could involve spontaneous language and se-
mantic processing [82]; however, if we consider the pattern of AG activation and deactivations
across tasks, then clear differences emerge. First, as noted earlier for both semantic and non-
semantic tasks (e.g., judgements of word meaning, episodic encoding, visuospatial decisions),
the ventral AG deactivates; indeed, the ventral AG forms a core part of the default mode network
[83], which is not true of other brain regions known to be involved in semantic representation
(e.g., the ATL shows activation for semantic tasks over rest but deactivation with non-semantic
tasks) [7,12]. The ventral AG, however, is most commonly engaged positively in studies that
examine episodic memory retrieval, as described earlier [35,84].

Taken together, these neuropsychological and functional neuroimaging data challenge the
classical notion that the AG supports semantic representation per se (see Figure 2 for summary
of the alternative interpretations of the ‘semantic’ ATL versus AG hubs). The current literature
involves investigation of at least two alternative hypotheses. One proposal has reformulated the
classical semantic AG hypothesis to suggest, instead, that the AGmight support ‘event-semantic’
458 Trends in Neurosciences, June 2021, Vol. 44, No. 6
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Figure 2. Alternative Interpretations of the ‘Semantic’ Anterior Temporal Lobe (ATL) versus Angular Gyrus (AG) Hubs. The results from (A) and (B) have both
been interpreted as strong evidence that the AG is a core semantic hub. Specifically, (A) shows the summary from a meta-analysis [74] that included studies using a
semantic contrast (e.g., words versus non-words, concrete > abstract items). (B) Shows the results from a meta-analysis that contrasted concrete > abstract items
(from [75]). Nevertheless, unlike areas such as the positively activated posterior inferior temporal gyrus (ITG), the results in the AG largely reflected differential levels of
deactivation, which raises the alternative possibility that they result from differential difficulty rather than semantic representation. This is clearly illustrated in the results
from (D) (from [12]). This study showed that, when contrasting tasks versus a resting baseline, the AG is consistently deactivated for both semantic studies > rest, and
non-semantic tasks > rest (blue regions). Importantly, there is no difference in AG activity levels when directly comparing the semantic and non-semantic studies. This
is quite unlike the core ATL semantic hub, which is positively activated for semantic tasks (red activation), but deactivated for non-semantic control tasks. It is important
to realise that AG deactivation can, for many though not all tasks, vary in line with task or item difficulty. For instance, in common ‘semantic’ contrasts there is often a
difficulty confound: in contrasts such as words > non-words, or concrete > abstract, the easier task is contrasted with the harder task. In fact, the results from these
contrasts can be reversed by manipulating task/item difficulty to be in the opposite direction [80,81]. The importance of difficulty-related deactivations is demonstrated
in (C). This study directly manipulated difficulty of semantic and visuospatial tasks. Again, when semantic > non-semantic contrasts are matched in task difficulty (purple
regions) [7], the AG does not show a response (whereas other known semantic regions do respond, including the ATL). Strikingly, the AG shows a task difficulty effect,
revealing the same easy > hard difference not only in semantic but also non-semantic, visuospatial decisions (blue areas). Abbreviations: ROI, region of interest.

Trends in Neurosciences
information and the ATL acts as a hub for other aspects of semantics [76]. Various forms of
evidence have been used to support this emerging hypothesis, including combinatorial semantic
tasks where readily combined adjective–noun or adjective–verb word pairs elicit stronger AG acti-
vation compared with less easily combined alternatives [85,86]. Like the prior AG general semantic
view, this hypothesis offers an explanation for the involvement of AG in episodic retrieval by arguing
that episodic memories necessitate event knowledge [76]. Challenges to this view include: (i) most
of the combinatorial noun-phrase experiments are again based on contrasting an easy versus hard
Trends in Neurosciences, June 2021, Vol. 44, No. 6 459
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Outstanding Questions
What are the adaptive benefits of the
proposed integrative buffering function
of AG for behavioural domains beyond
episodic and semantic memory?

To what extent can the functional
distinctions that have been observed
across AG subregions be explained
by a single underlying function modu-
lated by domain-specific alliances
with other brain areas?

What is the functional significance of
activation and deactivation patterns in
AG that are seen in some behavioural
domains but not others?

Towhat extent do the episodicmemory
confidence reductions demonstrated
following lateral parietal lesions
generalise to subjective judgments
about other cognitive abilities?

Can therapeutic interventions targeting
AG function be demonstrated to
enhance components of episodic and
semantic cognition?
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task condition, which as now known, can generate a difference in the ventral AG even for non-
verbal, non-semantic activities [7]; and (ii) the multihub hypothesis does not appear to fit with the
data from patients with semantic dementia, which arises from atrophy centred on the ATL bilater-
ally and not the AG, who have impoverished generalised semantic impairment, including reduced
knowledge about events and social schema [87].

The second alternative hypothesis is that the AG does not support long-term stored information
per se but rather is a multimodal online temporary buffer for external and internal information.
Indeed, this hypothesis might be consistent with other proposals that AG acts a ‘schematic-
convergence zone’ that binds information, if we assume that this binding is temporary [88]. An
online buffer would seem to be a necessary neurocomputation for the construction of internal
models of the world, reconstruction of autobiographical memories, or the envisioning of possible
future events, and, perhaps, for the ongoing buffering of combinatorial meaning generated over a
time-extended period [89–91]. All these processes would require the positive engagement of the
AG, whereas the activation of semantic representations via the hub-and-spoke architecture does
not require online buffering and thus the AG is not engaged or even deactivated. In cases when
this form of AG buffering system is damaged, patients should find it difficult to construct detailed
autobiographical memories and to complete other time-extended activities that all require an
online internal buffering of recent stimuli and events.

Concluding Remarks
As siblings within the ‘declarative’ or ‘explicit’ family of long-term memory systems, episodic and
semantic memory are defined by many shared features in addition to their essential differences.
Despite the closeness of their taxonomic relationship, the cognitive and brain mechanisms of
these two forms of memory have largely been investigated independently, leading to a prolifera-
tion of theories, which sometimes overlook that episodic and semantic memory (as well as a
broader range of other non-memory cognitive activities) engage a number of the same brain
areas and thus presumably share at least some underlying neurocomputations. One common
brain area is AG, classically implicated in both episodic and semantic memory, as well as several
other cognitive domains. Building on previous domain-specific theories of parietal function, we
have here considered a unifying model that encompasses a set of common principles arising
from cognitive neuroscience. This cross-domain synthesis proposes that AG, and wider LPC,
computations support the online dynamic buffering that combines distinct forms of information,
such as multiple sensory modalities or different spatiotemporal frameworks. Further work is
required to understand the purpose and implications of such an integrative buffering function
(see Outstanding Questions). Its uses might include the internal representation of the current
external and internal state of the world, which would seem to be a necessary element for keeping
track of time-extended events or activities. With respect to higher forms of human cognitive func-
tions, the AG buffer may enable the conscious evaluation and exploration of the complex feature
networks that comprise many of our autobiographical experiences and conceptual knowledge
structures. Such in-depth and demanding cognitive processing may not be necessary for
accomplishing many laboratory memory tasks, such as those that require the retrieval of a single
episodic feature or semantic fact. But the capacity to flexibly and dynamically reflect on the
content of our memories affords us the invaluable real-world ability to understand and learn
from our experiences and use them to guide subsequent action in novel and creative ways that
may be crucial for successful adaptive human behaviour.
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